3.2.22 \(\int \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [122]

Optimal. Leaf size=125 \[ \frac {(a-3 b) (a+b) \tan ^{-1}\left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 b^{3/2} f}+\frac {(a-3 b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 b f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 b f} \]

[Out]

1/8*(a-3*b)*(a+b)*arctan(cos(f*x+e)*b^(1/2)/(a+b-b*cos(f*x+e)^2)^(1/2))/b^(3/2)/f-1/4*cos(f*x+e)*(a+b-b*cos(f*
x+e)^2)^(3/2)/b/f+1/8*(a-3*b)*cos(f*x+e)*(a+b-b*cos(f*x+e)^2)^(1/2)/b/f

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3265, 396, 201, 223, 209} \begin {gather*} \frac {(a-3 b) (a+b) \text {ArcTan}\left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a-b \cos ^2(e+f x)+b}}\right )}{8 b^{3/2} f}-\frac {\cos (e+f x) \left (a-b \cos ^2(e+f x)+b\right )^{3/2}}{4 b f}+\frac {(a-3 b) \cos (e+f x) \sqrt {a-b \cos ^2(e+f x)+b}}{8 b f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^3*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

((a - 3*b)*(a + b)*ArcTan[(Sqrt[b]*Cos[e + f*x])/Sqrt[a + b - b*Cos[e + f*x]^2]])/(8*b^(3/2)*f) + ((a - 3*b)*C
os[e + f*x]*Sqrt[a + b - b*Cos[e + f*x]^2])/(8*b*f) - (Cos[e + f*x]*(a + b - b*Cos[e + f*x]^2)^(3/2))/(4*b*f)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 3265

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx &=-\frac {\text {Subst}\left (\int \left (1-x^2\right ) \sqrt {a+b-b x^2} \, dx,x,\cos (e+f x)\right )}{f}\\ &=-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {(a-3 b) \text {Subst}\left (\int \sqrt {a+b-b x^2} \, dx,x,\cos (e+f x)\right )}{4 b f}\\ &=\frac {(a-3 b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 b f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {((a-3 b) (a+b)) \text {Subst}\left (\int \frac {1}{\sqrt {a+b-b x^2}} \, dx,x,\cos (e+f x)\right )}{8 b f}\\ &=\frac {(a-3 b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 b f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {((a-3 b) (a+b)) \text {Subst}\left (\int \frac {1}{1+b x^2} \, dx,x,\frac {\cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 b f}\\ &=\frac {(a-3 b) (a+b) \tan ^{-1}\left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 b^{3/2} f}+\frac {(a-3 b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 b f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.30, size = 119, normalized size = 0.95 \begin {gather*} \frac {\frac {\cos (e+f x) \sqrt {2 a+b-b \cos (2 (e+f x))} (-a-4 b+b \cos (2 (e+f x)))}{\sqrt {2} b}+\frac {(a+b) (-a+3 b) \log \left (\sqrt {2} \sqrt {-b} \cos (e+f x)+\sqrt {2 a+b-b \cos (2 (e+f x))}\right )}{(-b)^{3/2}}}{8 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^3*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

((Cos[e + f*x]*Sqrt[2*a + b - b*Cos[2*(e + f*x)]]*(-a - 4*b + b*Cos[2*(e + f*x)]))/(Sqrt[2]*b) + ((a + b)*(-a
+ 3*b)*Log[Sqrt[2]*Sqrt[-b]*Cos[e + f*x] + Sqrt[2*a + b - b*Cos[2*(e + f*x)]]])/(-b)^(3/2))/(8*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(310\) vs. \(2(109)=218\).
time = 7.19, size = 311, normalized size = 2.49

method result size
default \(-\frac {\sqrt {\left (\cos ^{2}\left (f x +e \right )\right ) \left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right )}\, \left (-4 \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b^{\frac {5}{2}} \left (\cos ^{2}\left (f x +e \right )\right )+10 \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b^{\frac {5}{2}}+2 a \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b^{\frac {3}{2}}+\arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right ) a^{2} b -2 a \arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right ) b^{2}-3 b^{3} \arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right )\right )}{16 b^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(311\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/16*(cos(f*x+e)^2*(a+b*sin(f*x+e)^2))^(1/2)*(-4*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b^(5/2)*cos(f*x+e
)^2+10*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b^(5/2)+2*a*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b^(3/
2)+arctan(1/2*(-2*b*cos(f*x+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2))*a^2*b-2*a*arctan(1/2
*(-2*b*cos(f*x+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2))*b^2-3*b^3*arctan(1/2*(-2*b*cos(f*
x+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)))/b^(5/2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 186, normalized size = 1.49 \begin {gather*} \frac {\frac {{\left (a + b\right )} a \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} + \frac {{\left (a + b\right )} \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - \frac {4 \, a \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - 4 \, \sqrt {b} \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) - 4 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \cos \left (f x + e\right ) - \frac {2 \, {\left (-b \cos \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} \cos \left (f x + e\right )}{b} + \frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \cos \left (f x + e\right )}{b}}{8 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

1/8*((a + b)*a*arcsin(b*cos(f*x + e)/sqrt((a + b)*b))/b^(3/2) + (a + b)*arcsin(b*cos(f*x + e)/sqrt((a + b)*b))
/sqrt(b) - 4*a*arcsin(b*cos(f*x + e)/sqrt((a + b)*b))/sqrt(b) - 4*sqrt(b)*arcsin(b*cos(f*x + e)/sqrt((a + b)*b
)) - 4*sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e) - 2*(-b*cos(f*x + e)^2 + a + b)^(3/2)*cos(f*x + e)/b + sqr
t(-b*cos(f*x + e)^2 + a + b)*(a + b)*cos(f*x + e)/b)/f

________________________________________________________________________________________

Fricas [A]
time = 0.66, size = 501, normalized size = 4.01 \begin {gather*} \left [\frac {{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt {-b} \log \left (128 \, b^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{6} + 160 \, {\left (a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{4} + a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 32 \, {\left (a^{3} b + 3 \, a^{2} b^{2} + 3 \, a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, b^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{5} + 10 \, {\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-b}\right ) + 8 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{3} - {\left (a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{64 \, b^{2} f}, -\frac {{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt {b} \arctan \left (\frac {{\left (8 \, b^{2} \cos \left (f x + e\right )^{4} - 8 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {b}}{4 \, {\left (2 \, b^{3} \cos \left (f x + e\right )^{5} - 3 \, {\left (a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )\right )}}\right ) - 4 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{3} - {\left (a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{32 \, b^{2} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/64*((a^2 - 2*a*b - 3*b^2)*sqrt(-b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + b^4)*cos(f*x + e)^6 + 160*(a^2
*b^2 + 2*a*b^3 + b^4)*cos(f*x + e)^4 + a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4 - 32*(a^3*b + 3*a^2*b^2 + 3*a
*b^3 + b^4)*cos(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^7 - 24*(a*b^2 + b^3)*cos(f*x + e)^5 + 10*(a^2*b + 2*a*b^2
+ b^3)*cos(f*x + e)^3 - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)
) + 8*(2*b^2*cos(f*x + e)^3 - (a*b + 5*b^2)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a + b))/(b^2*f), -1/32*((a^
2 - 2*a*b - 3*b^2)*sqrt(b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2
)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)/(2*b^3*cos(f*x + e)^5 - 3*(a*b^2 + b^3)*cos(f*x + e)^3 + (a^2*b + 2*
a*b^2 + b^3)*cos(f*x + e))) - 4*(2*b^2*cos(f*x + e)^3 - (a*b + 5*b^2)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a
 + b))/(b^2*f)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**3*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.76, size = 131, normalized size = 1.05 \begin {gather*} \frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} {\left (2 \, \cos \left (f x + e\right )^{2} - \frac {a b f^{4} + 5 \, b^{2} f^{4}}{b^{2} f^{4}}\right )} \cos \left (f x + e\right )}{8 \, f} + \frac {{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \log \left ({\left | \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} + \frac {\sqrt {-b f^{2}} \cos \left (f x + e\right )}{f} \right |}\right )}{8 \, \sqrt {-b} b {\left | f \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

1/8*sqrt(-b*cos(f*x + e)^2 + a + b)*(2*cos(f*x + e)^2 - (a*b*f^4 + 5*b^2*f^4)/(b^2*f^4))*cos(f*x + e)/f + 1/8*
(a^2 - 2*a*b - 3*b^2)*log(abs(sqrt(-b*cos(f*x + e)^2 + a + b) + sqrt(-b*f^2)*cos(f*x + e)/f))/(sqrt(-b)*b*abs(
f))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\sin \left (e+f\,x\right )}^3\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)^3*(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(sin(e + f*x)^3*(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________